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The relation between vertical and adiabatic singlet-triplet gaps and the generalized spin-dependent global
response coefficients is presented. Local, semilocal, and hybrid density functional calculations of these
quantities for the halocarbenes CXY, where X and Y are H, F, Cl, Br, and I, show that the vertical gaps are
better reproduced at the local level. Hybrid functionals overestimate them considerably. For the whole series
of halocarbenes considered, except CHI, calculations predict the singlet1A1 as the ground state. The only
exception found is for the hybrid calculation of CHI that predicts3B1 as the ground state for this halocarbene.
For all functionals, there is a linear relation between the vertical singlet-triplet energy gap and the spin
potential (the first derivative of the total energy with respect to the number of unpaired electrons), and the
inclusion of the spin hardness (the second derivative of the total energy with respect to the number of unpaired
electrons) improves this relationship considerably. It is also shown that the geometrical relaxation
accompanying the adiabatic excitation in the halocarbenes is constant.

I. Introduction

Several recent works have shown that the spin-polarized
extension of density functional theory (DFT) broadens the
capabilities of this approach to chemical reactivity. Galva´n et
al.1 have presented the general formalism in a representation
where the independent variables are the total number of electrons
(N) and the number of unpaired electrons (NS). Later, Galva´n
and Vargas applied the formalism to atoms showing that some
of these global coefficients have a periodic behavior2 and
established the connection between the generalized spin-
polarized Fukui functions and Hund’s rule.3 The spin-polarized
extension of chemical reactivity can also be developed in a
representation where the independent variables are the number
of spin R(Nv) and spinâ(NV) electrons. These variables are
related toN andNS by the expressionsN ) Nv + NV andNS )
Nv - NV. Using this latter representation, Ghanty and Ghosh4-8

showed, for the first time, that the spin-polarized extension of
the DFT approach to chemical reactivity leads to a solid
theoretical justification of one of the landmark expressions in
chemistry: Pauling’s covalent contribution to bond energies.
In the {N, NS} representation, the total energy of a system

can be expanded in a Taylor series around a reference ground
state withN0 electrons, withNS

0 unpaired electrons, and in the
presence of an external potentialV0(r ) as

whereµN is the chemical potential that parallels but is not equal
to the usual spin-restricted chemical potential;2 µS, the rate of

change of the total energy with respect to the number of unpaired
electrons, has been named the spin potential1 and gauges the
tendency of the system to change its spin polarization;ηNN, ηNS,
andηSS, the generalized hardnesses,1 are the full set of second
partial derivatives of the total energy with respect toN andNS,
while fN(r ) and fS(r ) are the generalized Fukui functions1

corresponding to the first partial derivatives of the electron
densityF(r ) with respect toN andNS, respectively; and, finally,
ø(r ,r ′) is the linear response function. In deriving eq 1, it has
been assumed that the energy functional is such that the order
of partial and/or functional derivation is immaterial. The upper
index 0 indicates that all of these global and local response
functions are evaluated at the reference point.
If one is interested in energy changes that occur at a constant

number of electrons, eq 1 reduces to

One of the purposes of this work is to analyze the capability
of eq 2 to describe energy changes when the total number of
electrons is kept fixed while the system suffers a change in the
total number of unpaired electrons. An interesting and chal-
lenging problem where these types of processes are relevant is
the study of the multiplicity changes that occur in halocarbenes.
Consequently, the main objective of the present work is to gain
some physical and chemical insight on the role played by the
spin-dependent global response coefficient in the description
of the singlet-triplet energy differences of these chemical
systems. The chemistry of these systems has been widely
studied.9-35 It is now well-established that the ground state of
halocarbenes can be a singlet or triplet and also that the reactivity
of these species is highly dependent on its ground-state

∆E= E[N,NS,V(r )] - E[N0,NS
0,V0(r )]

) µN
0∆N+ µS

0∆NS +∫dr F0(r ) ∆V(r ) + 1/2ηNN
0 (∆N)2 +

ηNS
0 ∆N∆NS + 1/2ηSS

0 (∆NS)
2 + ∆N∫dr fN0(r ) ∆V(r ) +

∆NS∫dr fS0(r ) ∆V(r ) + 1/2∫∫dr dr ′ ø0(r ,r ′) ∆V(r )

∆V(r ′) + ... (1)

E[N0,NS,V(r )] - E[N0,NS
0,V0(r )] = µS

0∆NS +

∫dr F0(r ) ∆V(r ) + 1/2ηSS
0 (∆NS)

2 +

∆NS∫dr f S0(r ) ∆V(r ) +
1/2∫∫dr dr ′ ø0(r ,r ′) ∆V(r ) ∆V(r ′) + ... (2)
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multiplicity:36 singlet ground-state carbenes react in one step
while triplets are usually involved in a two-stage radical reaction.
Experimental determination of the ground-state multiplicity of
these systems is limited, and thus, in recent years, several
theoretical groups have devoted special attention to the accurate
calculation of geometries, frequencies, and singlet-triplet energy
gaps of halocarbenes.16-31 These works reveal that electron
correlation is a crucial factor in correctly predicting the relative
stability between the singlet and the triplet. The structure of
this work is the following. In section II a set of approximations
will be used to simplify eq 2. Results corresponding to the
calculation of the vertical and adiabatic singlet-triplet energy
gaps of halocarbenes using several approximations to the
exchange-correlation energy functional (local, semilocal, and
hybrid) are presented in section III (computational details can
be found in the Appendix). The relation between these energy
gaps and the spin potential are discussed in section IV.
Conclusions are contained in the last section (V).

II. Approximations to the Spin Potential and Spin
Hardness and Their Relation to Vertical and Adiabatic
Singlet-Triplet Energy Gaps

The energy differences indicated by eq 2 can be calculated
following any continuous path in the{NS,V} plane. However,
not only from the conceptual point of view, but also for practical
(computational) reasons, the paths depicted in Figure 1 are the
most convenient for describing the change from a singlet to a
triplet state. To clarify these points, consider a situation where
one goes from a singlet (NS ) 0) initial state to a triplet (NS )
2) final state. The straightforward way to obtain the energy
difference between these two states is to move along path I in
Figure 1. In this case, the energy difference corresponds to the
adiabatic singlet-triplet energy gap (∆EST

ad). Using eq 2, one
finds that

where, as indicated, all response coefficients are evaluated at
the singlet (initial) state and∆V(r ) ) V(T)(r ) - V(S)(r ) is the
difference between the nuclear potential evaluated at the triplet
and singlet ground-state geometries, respectively. Numerically,
the evaluation of∆EST

ad is straightforward: one has to optimize

the geometries for the two multiplicities and take the energy
difference. An alternative is provided by the right hand side
of eq 3. Knowledge of the singlet response coefficients, together
with a model for the geometrical relaxation associated with the
transition, allows one to estimate the adiabatic singlet-triplet
energy gap. Going back to Figure 1, along path II, the energy
gap just described is decomposed into two contributions, one
at constant external potential,∆EV, (fixed geometry), and another
at constant multiplicity,∆ENS. Thus, one can write that

where, according to eq 2, each contribution is given by

where the superscripts (T/S) denote that these coefficients are
evaluated for the triplet at the external potential corresponding
to the singlet.
Both paths are equivalent, but path II requires the following

steps: (1) geometry optimization of the singlet state, (2) single-
point calculation with a multiplicity of 3, fixing the geometry
to that obtained in the previous step, and (3) geometry
optimization of the triplet state taking the initial geometry as
that corresponding to the singlet. By defining the reference in
this manner, path II corresponds to the physical process of a
vertical excitation from the singlet to the triplet followed by
the relaxation to the triplet ground-state geometry. Thus,
changes at constant external potential represent vertical excita-
tions or decay processes, and changes at constant spin number
(multiplicity) are geometry relaxations.
There is an underlying assumption in the above derivation.

It has been assumed that the energy and its partial and functional
derivatives are continuous. Maintaining this assumption and
recalling that the expressions derived by Galva´n et al. for the
spin potential,1,2 in terms of the Kohn-Sham spin-polarized
frontier eigenenergies, depend on whether one is increasing or
decreasing the number of unpaired electrons, one can rewrite
eq 5 in a more precise way as

whereµS
(S)+ is the spin potential of the singlet in the direction

whereNS increases, i.e., on going from the singlet to the triplet.
Certainly, spin symmetry imposes the restriction

This latter fact, together with the numerical evidence that has
been presented by Galva´n and Vargas,2 suggests that the
dependence of the energy onNS is continuous but has noncon-
tinuous first partial derivatives with respect to the spin number
evaluated at even values ofNS, when the total number of
electrons is also even. This conjecture is schematically depicted
in Figure 2. This figure shows that theE(NS) curve is a
piecewise continuous function with first partial derivatives that
are discontinuous when the number of unpaired electrons is even
and the total number of electrons is kept fixed.
Now, to evaluate eq 7, one needs an expression for the spin

hardness,ηSS
(S), that can be naively obtained in the following

Figure 1. Schematic representation of integration paths in the{NS,V}
plane for the calculation of singlet-triplet energy differences. See text
for explanation of all quantities.

∆EST
ad ) E[N0,2,V(T)(r )] - E[N0,0,V(S)(r )]

) 2µS
(S) +∫dr F(S)(r ) ∆V(r ) + 2ηSS

(S) + 2∫dr f S(S)(r ) ×
∆V(r ) + 1/2∫∫dr dr ′ ø(S)(r ,r ′) ∆V(r ) ∆V(r ′) (3)

∆EST
ad ) ∆EV + ∆ENS (4)

∆EV ) 2µS
(S) + 2ηSS

(S) (5)

∆ENS )∫dr F(T/S)(r ) ∆V(r ) +

1/2∫∫dr dr ′ ø(T/S)(r ,r ′) ∆V(r ) ∆V(r ′) (6)

∆EV ) 2µS
(S)+ + 2ηSS

(S) (7)

µS
(S)- ) -µS

(S)+ (8)
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way. Since

the finite differences approximation of the last derivative in eq
9 is given by

whereµS
(T)- is the spin potential of the triplet evaluated in the

direction of decreasing multiplicity, i.e., toward the singlet.
Substituting this latter equation into eq 7, one has

Using the expressions derived by Galva´n et al.1,2 for µS
+ and

µS
-,

whereεHOMOσ andεLUMOσ are the orbital energies of the highest
occupied and lowest unoccupied molecular spin-orbitals with
spin σ, respectively, one obtains expressions that allow the
calculation of the vertical singlet-triplet gap solely in terms of
the frontier spin-orbital energies.
The previous derivation can be seriously objected to because

it relies on the erroneous assumption of analyticity of theE(NS)
function. However, by taking into consideration the facts
provided by the numerical evidence, and by assuming that the
piecewise continuousE(NS) function is a polynomial of degree
2 in the open intervalNS∈ (0,2), it can be shown that the same
expressions for the spin hardness (eq 10) and the vertical
singlet-triplet energy gap (eq 11) are recovered. It is worth
noting thatηSSmeasures the concavity of theE versusNS curve
in this interval. Values ofηSSfor the halocarbenes with different
approximations to the exchange-correlation energy functional
are presented in Table 1. They provide further evidence, in
molecules, about the conjectured structure depicted in Figure 2
for the behavior of the energy as a function of the number of
unpaired electrons. Thus, the simplicity of the expression for
calculating the vertical singlet-triplet gap in terms of the spin-
dependent response functions is the same, when one derives it

by taking into account the conjectured form of theE(NS)
function or using naively the finite differences approximation
for the spin hardness.

III. Results and Discussion

To test the validity of the theory developed in the previous
section, results are presented for two approximations that allow
the calculation of the vertical singlet-triplet energy gap in terms
of the global spin-dependent response coefficients for halocar-
benes.
A first order approximation is considered, where one keeps

only the first term on the right hand side of eq 7. Using eq 12
for the spin potential of the singlet state leads one to the
following approximate expression for the vertical singlet-triplet
gap:

where the spin dependence has been dropped due to the fact
that for a singlet state theR andâ orbital energies of the HOMO
(and LUMO) are equal. Thus, one recovers the well-known
expression derived within the context of unrestricted Hartree-
Fock theory37 that relates the vertical singlet-triplet energy gap
to the difference between the LUMO and HOMO of the singlet
state. Consequently, one also obtains and justifies the rule
stating that large HOMO-LUMO gaps of the singlet stabilize
this state with respect to the triplet.
In Figure 3, results for the vertical singlet-triplet energy gap

for the halocarbenes, calculated within Kohn-Sham theory with
several approximations to the exchange-correlation energy
functional (see Appendix for computational details), are de-
picted. It can be seen that, independently of the theoretical
level used, the spin potential goes practically parallel to
∆EST

VERTICAL. The relation established by eq 14 is further tested
in Figure 4. The slopes and correlation coefficients of the least
squares linear fits (dashed lines in Figure 4) are 0.908 and 0.995
for the local (VWN), 0.856 and 0.938 for the semilocal
(BPW91), and 0.656 and 0.938 for the hybrid (B3PW91)
functionals, respectively. In all cases, this first order ap-
proximation overestimates the vertical singlet-triplet energy
difference, but the linear relation between∆EST

VERTICAL and the
spin potential of the singlet state (µS

(S)+) is satisfied. The
agreement is better for the local and semilocal approximations,
while it is less satisfactory for the hybrid, not only because of

Figure 2. Schematic dependence of the total energy of an electronic
system with an even number of electrons and as a function of the
number of unpaired electrons (NS), when the total number of electrons
(N) and the external potential (V(r )) are constant.

ηSS) ( ∂2E∂NS
2)
N,V(r )

) (∂µS

∂NS)N,V(r ) (9)

ηSS=
µS
(T)- - µS

(S)+

2
(10)

∆EV ) µS
(S)+ + µS

(T)- (11)

µS
+ ) 1/2(εLUMOv - εHOMOV), whenNS increases (12)

µS
- ) 1/2(εHOMOv - εLUMOV), whenNS decreases (13)

TABLE 1: Spin Hardness for the Halocarbenes CXY (X, Y
) H, F, Cl, Br, I), Calculated with Different
Exchange-Correlation Energy Functionalsa

ηSS(eq 10)

CXY VWN BPW91 B3PW91

CHF -29.09 -51.07 -162.30
CHCl -24.10 -43.43 -144.42
CHBr -22.31 -39.77 -137.00
CHI -76.76 -35.06 -68.585
CF2 -36.32 -59.32 -174.00
CFCl -28.44 -47.13 -151.57
CFBr -25.14 -40.89 -140.93
CFI -20.33 -32.94 -126.33
CCl2 -23.24 -39.67 -135.78
CClBr -21.52 -36.18 -128.91
CClI -18.90 -31.51 -119.23
CBr2 -19.99 -33.32 -122.68
CBrI -17.63 -29.48 -114.40
CI2 -15.86 -26.49 -107.13

a All values are in kJ/(mol‚electron2). For computational details, see
the Appendix.

∆EST
VERTICAL ≈ ∆EV

(1) ) 2µS
(S)+ = εLUMO

S - εHOMO
S (14)
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deviations from linearity but also because the overestimation
is more pronounced. The enhanced HOMO-LUMO gap
produced by including Hartree-Fock exchange in this latter
functional is the main reason for the overestimation of
∆EST

VERTICAL. This fact can also be appreciated in Figure 3. For
all of the halocarbenes tested, and in contrast to VWN and
BPW91, the hybrid HOMO-LUMO gap always goes above
∆EST

VERTICAL.
As shown in section II, eq 11 is a first order approximation

from the transition-state point of view, but considering the
singlet (or triplet) state as the reference point, it can also be
interpreted as including second order effects. Thus, the second
approach, which will be called a second order approximation,
is obtained upon substituting eqs 12 and 13 in eq 11. This
procedure leads to

An interesting feature of this expression is that sinceµS
(T)- is

strictly less thanµS
(S)+ (see Table 2), the predicted second order

vertical singlet-triplet gap will be smaller than 2µS
(S)+, cor-

recting in the right direction the overestimation obtained with
∆EV

(1). The comparison between the values predicted by eq 15
with the exact vertical singlet-triplet gap of halocarbenes is
shown in Figure 5. The slopes and correlation coefficients of
the least squares linear fits (dashed lines in Figure 5) are 0.984
and 1.0 for the local (VWN), 0.998 and 0.999 for the semilocal
(BPW91), and 1.0 and 0.999 for the hybrid (B3PW91) func-
tionals. One should notice the considerable improvement
obtained for the hybrid functional, which results from the fact
that, contrary to VWN and BPW91, the spin potential for the
triplet is always negative (see Table 2). Thus, one can conclude
that, independently of the level of theory used to study these
vertical excitations in halocarbenes, the relation between the
energy gaps and the frontier spin-orbital energies established
by eq 15 holds in general for these systems.
No model for the geometry relaxation will be presented in

this work. However, it is worth noting that for the systems
tested here there is a linear relation between the adiabatic and

Figure 3. Vertical singlet-triplet energy gaps and spin potentials of
the singlet state for the halocarbenes CXY (X, Y) H, F, Cl, Br, and
I), calculated at (a) local (VWN), (b) semilocal (BPW91), and (c) hybrid
(B3PW91) levels within Kohn-Sham theory. Energies are in kilojoules
per mole and spin potentials in kilojoules per (mole-electron).

Figure 4. Exact versus first order approximation (eq 14) to the vertical
singlet-triplet energy gap of the halocarbenes CXY (X, Y) H, F, Cl,
Br, and I), calculated at local (VWN), semilocal (BPW91), and hybrid
(B3PW91) levels within Kohn-Sham theory. Both quantities are in
kilojoules per mole.

TABLE 2: Spin Potentials for the Singlet (µS
(S)+) and

Triplet ( µS
(T)-) of the Halocarbenes CXY (X, Y) H, F, Cl,

Br, I), Calculated with Different Exchange-Correlation
Energy Functionalsa

µS
(S)+ µS

(T)-

CXY VWN BPW91 B3PW91 VWN BPW91 B3PW91

CHF 65.61 81.29 191.88 7.43-20.85 -132.72
CHCl 47.31 62.11 160.58 -0.89 -24.76 -128.26
CHBr 46.75 60.19 153.85 2.13-19.35 -120.14
CHI 42.48 54.05 140.35 -111.00 -16.07 3.18
CF2 161.52 171.43 285.17 88.87 52.80-62.83
CFCl 117.16 127.31 226.79 60.28 33.06-76.35
CFBr 109.09 117.12 210.92 58.81 35.34-70.94
CFI 93.36 99.18 185.15 52.69 33.29-67.50
CCl2 82.01 92.86 181.65 35.52 13.52 -89.92
CClBr 77.43 86.90 171.80 34.39 14.55-86.01
CClI 67.15 75.23 154.34 29.35 12.21 -84.12
CBr2 73.62 82.07 163.21 33.63 15.44 -82.15
CBrI 64.22 71.16 147.59 28.96 12.21 -81.21
CI2 56.50 62.99 135.29 24.78 10.00 -78.98

a All values are in kJ/(mol‚electron). For computational details, see
the Appendix.

∆EST
VERTICAL = ∆E(2)V ) µS

(S)+ + µS
(T)-

= 1/2(εLUMO
S - εHOMO

S + εHOMOv
T - εLUMOV

T ) (15)
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vertical singlet-triplet energy differences. This fact can be
appreciated in Figure 6. Again, the linearity holds for the three
exchange correlation functionals. This result implies that the
energy contribution to the adiabatic gap due to the geometrical
relaxation in halocarbenes is almost constant. Since it has been
previously shown that the vertical energy is proportional to the
spin potential, the linear relation between the adiabatic and
vertical singlet-triplet energies leads one to conclude that the
former excitation energy in halocarbenes is also linearly related
to the spin potential.

IV. Conclusions

The spin-polarized extension of density functional theory is
used to demonstrate that the vertical singlet-triplet energy
difference is linearly related to the global spin-dependent
response coefficients. For the halocarbenes CXY (X, Y) H,
F, Cl, Br, and I), Kohn-Sham calculations with different
exchange correlation energy functionals show that this relation
holds, idependently of the level of theory used. A first order

approximation overestimates these gaps, particularly for the
hybrid functionals, and the inclusion of spin hardness through
a transition-state-like approach considerably improves the
predicted vertical singlet-triplet gaps.It is also shown that for
halocarbenes there is a linear relation between the adiabatic and
vertical singlet-triplet gaps that together with the previous
conclusion implies the existence of a linear relation between
the geometrical relaxation energy and the spin potential. A
deeper analysis of this fact is required, and it is currently being
investigated in our laboratory.
In summary, the present work shows that the global spin-

dependent response coefficients are useful in describing im-
portant aspects of chemical reactivity that cannot be described
within the spin restricted version of the theory.
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Figure 5. Exact versus second order approximation (eq 15) to the
vertical singlet-triplet energy gap of the halocarbenes CXY (X, Y)
H, F, Cl, Br, and I), calculated at local (VWN), semilocal (BPW91),
and hybrid (B3PW91) levels within Kohn-Sham theory. Both quantities
are in kilojoules per mole.

Figure 6. Adiabatic versus vertical singlet-triplet energy gaps of the
halocarbenes CXY (X, Y) H, F, Cl, Br, and I), calculated at local
(VWN), semilocal (BPW91), and hybrid (B3PW91) levels within
Kohn-Sham theory. Both quantities are in kilojoules per mole.

TABLE 3: Basis Sets and Contraction Schemes for the
Atoms in the Halocarbenes Studied in the Present Worka

atom basis set contraction

C DZVP (621/41/1*)
F DZVP (621/41/1*)
Cl DZVP (6321/521/1*)
Br DZVP (63321/5321/41+)
I DZVP (633321/53321/531*)
H DZVPP (41/1*)

a Exponents and coefficients from ref 39.

TABLE 4: Optimized Bond Distances for the Halocarbenes
CXY (X, Y ) H, F, Cl, Br, I), Calculated with Different
Exchange-Correlation Energy Functionalsa

LSDA BPW91 B3PW91

C-X 1A1
3B1

1A1
3B1

1A1
3B1

CHF C-H 1.142
(1.138)a

1.104 1.139 1.099 1.126 1.091

C-F 1.314
(1.305)b

1.312 1.338 1.335 1.319 1.322

CHCl C-H 1.129 1.099 1.127 1.095 1.115 1.088
C-Cl 1.699 1.656 1.729 1.683 1.709 1.673

CHBr C-H 1.128 1.099 1.127 1.096 1.114 1.088
C-Br 1.858 1.807 1.893 1.838 1.872 1.827

CHI C-H 1.128 1.099 1.127 1.096 1.115 1.089
C-I 2.064 1.998 2.102 2.035 2.083 2.025

CF2 C-F 1.311
(1.304)a

1.318 1.334 1.339 1.313 1.323

CFCl C-F 1.307 1.317 1.329 1.338 1.308 1.323
C-Cl 1.750 1.680 1.784 1.706 1.757 1.693

CFBr C-F 1.302 1.314 1.322 1.335 1.303 1.320
C-Br 1.933 1.841 1.975 1.874 1.944 1.857

CFI C-F 1.299 1.312 1.319 1.333 1.300 1.318
C-I 2.168 2.051 2.219 2.092 2.186 2.076

CCl2 C-Cl 1.732
(1.716)a

1.674 1.762 1.700 1.735 1.686

CClBr C-Cl 1.721 1.670 1.750 1.696 1.725 1.683
C-Br 1.905 1.831 1.946 1.864 1.914 1.848

CClI C-Cl 1.717 1.668 1.743 1.695 1.720 1.681
C-I 2.133 2.033 2.182 2.072 2.147 2.057

CBr2 C-Br 1.895
(1.740)a

1.827
(1.74)b

1.932 1.860 1.903 1.844

CBrI C-Br 1.889 1.825 1.924 1.856 1.896 1.842
C-I 2.119 2.027 2.158 2.070 2.130 2.053

CI2 C-I 2.111 2.023 2.147 2.062 2.121 2.047

a All values are in angstroms.b Experimental values taken from the
following references: CHF, ref 12; CCl2, ref 15; CF2, ref 9; CBr2,
ref 10.

3138 J. Phys. Chem. A, Vol. 102, No. 18, 1998 Vargas et al.



Appendix

All calculations reported in this work solve the Kohn-Sham
equations within the linear combination of Gaussian-type orbitals
(LCGTO) as implemented in Gaussian 94.38 Basis sets for C,
H, F, Cl, Br, and I were taken from Godbout et al.;39 the
contraction schemes for each atom are shown in Table 3. All
integrations were done numerically with a fine-pruned grid.40

To analyze the effect of density inhomogenities and the role of
Hartree-Fock exchange in the calculation of the spin potential

and spin hardness of halocarbenes, the following approximations
to the exchange-correlation energy functional were tested: a
local functional using Vosko, Wilk, and Nusair’s (VWN)
parametrization,41 a semilocal (generalized gradient approxima-
tion) using Becke’s exchange and Perdew and Wang correlation
(BPW91),42 and a three-parameter hybrid functional (B3PW91)
with the same exchange and correlation as those in the semilocal
one.43 The semilocal and hybrid approximations were incor-
porated self-consistently in the solution of Kohn-Sham equa-
tions. Full geometry optimizations using Berny’s gradient
method44 were done for the singlet and triplet states of all
halocarbenes. Optimized and available experimental bond
distances and bond angles are reported in Tables 4 and 5. In
agreement with previous calculations, the local functional
provides the best bond distances when compared with available
experimental information. Bond angles are less sensitive to the
exchange-correlation energy functional, and in all cases, for all
functionals, the bond angle in the triplet (3B1) state is larger
than in the singlet (1A1) state. In general, the most important
geometrical effect of the singlet-triplet excitation of halocar-
benes is on bond angles, which always increase. Bond distances
are less affected, and there is no unique trend for all halocar-
benes.
The adiabatic singlet-triplet energy differences calculated

at local, semilocal, and hybrid levels, together with available
experimental values as well as other theoretical predictions, are
reported in Table 6. As expected, the local approximation

TABLE 5: Optimized Bond Angles for the Halocarbenes
CXY (X, Y ) H, F, Cl, Br, I), Calculated with Different
Exchange-Correlation Energy Functionalsa

LSDA BPW91 B3PW91
1A1

3B1
1A1

3B1
1A1

3B1

CHF 101.3
(104.1)b

120.7 101.1 120.6 101.6 120.9

CHCl 101.6 126.1 101.1 125.5 101.9 125.8
CHBr 101.2 126.2 99.7 125.9 100.6 126.2
CHI 99.6 128.2 99.4 127.8 100.2 128.4
CF2 104.1

(104.8)b
119.3 104.1 119.8 104.3 119.5

CFCl 105.9 122.9 106.1 123.1 106.2 122.9
CFBr 106.1 123.7 106.4 124.0 106.4 123.7
CFI 107.2 125.1 107.4 125.2 107.4 124.9
CCl2 109.2

(109.2)b
128.2 109.4 128.1 109.6 130.5

CClBr 109.4 128.9 109.7 128.8 109.8 129.3
CClI 110.6 130.7 110.9 130.7 111.0 130.9
CBr2 109.4

(∼114)b
129.2
(∼150)b

109.9 129.4 110.0 129.3

CBrI 110.6 130.9 111.3 131.1 111.2 130.9
CI2 111.6 132.7 112.1 132.7 112.2 132.9

a All values are in degrees.b Experimental values taken from the
following references: CHF, ref 12; CCl2, ref 15; CF2, ref 9; CBr2, ref
10.

TABLE 6: Adiabatic Singlet-Triplet Energy Differences
for the Halocarbenes CXY (X, Y ) H, F, Cl, Br, I),
Calculated with Different Exchange-Correlation Energy
Functionalsi

CXY LSDA BPW91 B3PW91
exptl or

previous works

CH2 -57.61 -68.33 -68.99 -38.12a
-50.21b
-37.66c,d

CHF 51.92 41.00 36.15 47.28a

48.12d

53.97e

CHCl 17.78 9.62 1.30
CHBr 19.25 10.88 1.30
CHI 14.10 6.40 -6.40 15.46f

CF2 230.70 209.70 202.71 236.81a

233.47g

240.58b

CFCl 152.50 138.78 126.11 179.20g

164.85h

CFBr 142.90 129.49 115.39
CFI 120.50 110.25 92.30
CCl2 87.65 79.50 62.97 91.67g

108.37c

CClBr 82.68 74.98 57.03
CClI 67.95 60.25 41.05
CBr2 76.90 69.25 51.30 87.40g

93.72g

CBrI 64.10 56.40 38.45
CI2 53.85 46.15 25.65 65.81g

64.02d

a Experimental values taken from the following references: CHF
(ref 14); CH2 (ref 13) and CF2 (ref 11). b ref 19; cref 20, dref 25, eref
17, fref 28, gref 22, href 18 i All values are in kilojoules per mol.

TABLE 7: ZPE Corrected Adiabatic Singlet-Triplet
Energy Differences for the Halocarbenes CXY (X, Y) H, F,
Cl, Br, I), Calculated with Different Exchange-Correlation
Energy Functionalsa

CXY LSDA BPW91 B3PW91

CHF 52.51 41.71 36.48
CHCl 18.45 10.46 1.80
CHBr 20.13 11.72 1.46
CHI 14.85 8.79 -6.07
CF2 230.7 209.79 202.55
CFCl 153.2 139.54 126.52
CFBr 143.9 130.21 115.98
CFI 121.5 111.50 92.38
CCl2 89.12 80.67 63.81
CClBr 83.55 75.81 57.91
CClI 70.67 61.71 42.72
CBr2 77.74 70.29 52.30
CBrI 65.23 57.32 38.20
CI2 54.22 46.48 25.40

a All values are in kilojoules per mole.

TABLE 8: Vertical Singlet -Triplet Energy Differences for
the Halocarbenes CXY (X, Y) H, F, Cl, Br, I), Calculated
with Different Exchange-Correlation Energy Functionalsa

CXY LSDA BPW91 B3PW91

CH2 -9.67 -19.75 -22.64
CHF 78.99 69.29 65.40
CHCl 50.63 43.68 35.90
CHBr 52.55 45.52 36.53
CHI 48.70 40.96 30.75
CF2 260.90 239.32 233.63
CFCl 183.80 169.37 157.03
CFBr 173.10 158.95 144.85
CFI 148.70 137.19 120.50
CCl2 121.80 112.68 95.69
CClBr 114.70 106.40 88.45
CClI 98.70 91.04 70.50
CBr2 109.00 101.29 82.05
CBrI 94.85 84.60 66.65
CI2 82.05 74.35 53.85

a All values are in kilojoules per mole.
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provides the largest adiabatic gap followed by the semilocal
and hybrid functionals. However, this reduction on the ground
state energies of these systems for BPW91 and B3PW91 pro-
vides results that deviate more from experiment or high-quality
ab initio calculations. The hybrid adiabatic gaps predicted for
these molecular systems are too small, indicating the inability
of this model exchange-correlation functional to properly de-
scribe these excitation energies. It is worth noting that, ac-
cording to the calculations reported in this work, there is only
one system, CHI, where different functionals predict different
ground states. For CHI, local and semilocal calculations predict
the singlet (1A1) to be the ground state, which is in agreement
with previous calculations, while the hybrid predicts the triplet,
3B1, as the ground state. Harmonic frequencies were also
calculated to estimate the zero point energy (ZPE) correction.
The ZPE corrected adiabatic energy gaps are reported in Table
7. By comparing Tables 6 and 7, it is found that the ZPE
correction is small; the largest ZPE correction is 2.72 kJ/mol
for CClI. It is worth noting that this correction does not solve
the controversial ground-state assignment of CHI. Single point
calculations for the triplet at the optimized geometry of the
singlet were also done to calculate the vertical singlet-triplet
energy gap. The calculated values are reported in Table 8 for
the three theoretical models considered in this work. The orbital
energies of these single point calculations are those used to
calculate the quantityµS

(T)- introduced in the main text.
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